

Introduction of **JD BIOSCIENCE**

JD BIOSCIENCE

Q1 2023

- 1 Background
- 2 Experience
- 3 Purpose
- 4 Staff
- 5 Timeline
- 6 Targets and Technology

 JD BIOSCIENCE is a bio-venture focused on developing small molecule drugs for metabolic diseases (NASH, fibrosis, Inflammation, Obesity, and Cancer).
 and expanding research area including ADC and PROTAC

- We have robust **first-in-class drug candidates**. (NASH and IBD)
- Growing team of ~30 employees and ~20 with expertise in medicinal chemistry. (Established in 2017)

~15 external research collaboration partners.
 (Our role: Medicinal chemistry)

PROTAC-Proteolysis targeting chimera **ADC**-Antibody Drug Conjugate **NASH**-Non-Alcoholic Steatohepatitis

Medicinal chemistry

Chief executive officer Medicinal chemistry

Doo Seop Kim, Ph.D. Executive advisor Medicinal chemistry

Target discovery

Hail KimM.D., Ph.D. Target discovery, mechanism of action, and efficacy tests

In-Kyu Lee M.D., Ph.D. Target discovery, mechanism of action, and efficacy tests

JD BIOSCIENCE

Myung Ae Bae Ph.D.

Stability testing of API

Pharmacokinetics and druggability

To develop drugs for unmet metabolic disease

Management Team

CEO & Founder Jin Hee Ahn, Ph.D

- Professor, GIST
- Principal Researcher, KRICT

Executive Advisor Doo Seop Kim, Ph.D.

- Vice president & CTO, Kainos Medicine
- · Chief investigator, Merck & Co for 20 years

Chemistry Director

Seongrim Byeon, Ph.D

- Director/Healthcare division/R&D. Kainos Medicine Research Scientist, KIST

BD Director Sungmin Song, Ph.D

- Technology licensing manager, GIST
- Researcher, KRIBB
- · Ph.D./post-doc, Biology, Freiburg Univ.

Innovation Director Peter Goughnour, Ph.D

- Curigin R&D Director
- Kyung Hee Univ. Research Professor
- Ph.D./Post-Doc, Pharmacology, Seoul Nat. Univ.

Scientific Advisory Board

Chief Advisor

Rohit Loomba, M.D, MSHc

 Professor of Medicine, Director of Hepatology, UCSD

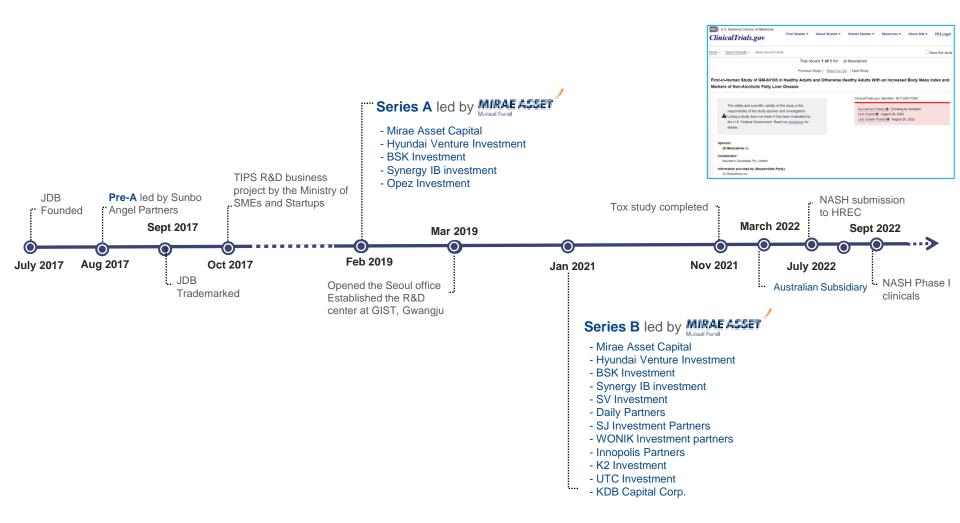
Advisor

Marc Hellerstein, M.D., Ph.D.

 Professor of Nutritional Biochemistry, UC Berkeley

Advisor

- John York, Pharm D, MBA
- Akita Biomedical, Founder, CEO


Advisor

- Joon Yong Park, M.D, Ph.D
- Yonsei University College of Medicine, Professor,

Advisor Jung II Lee, M.D, Ph.D

· Yonsei University College of Medicine, Professor,

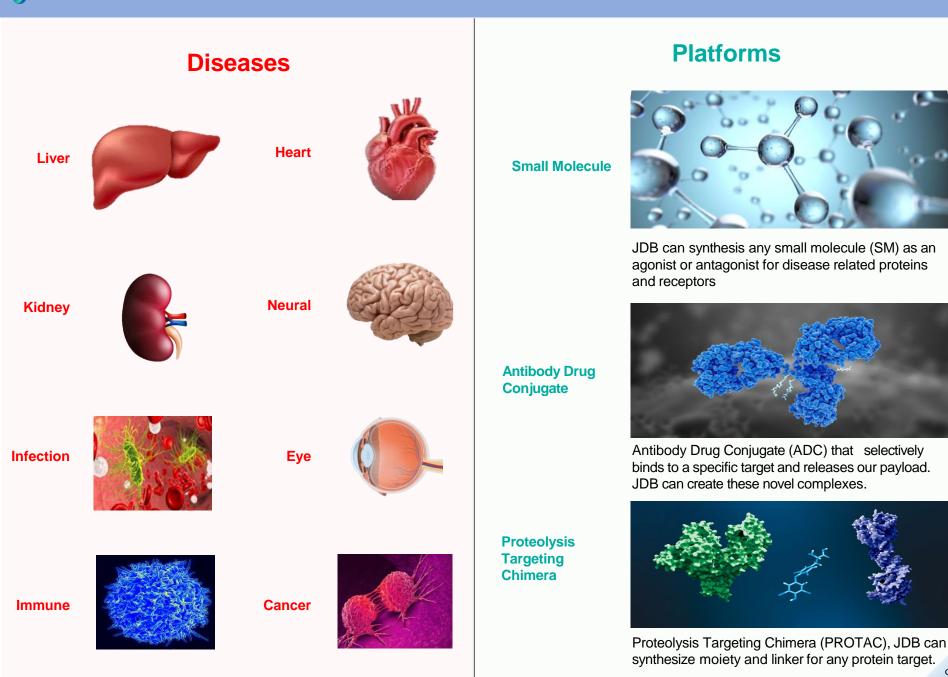
Vision

To be the leading small molecule company in the field of metabolic related disease

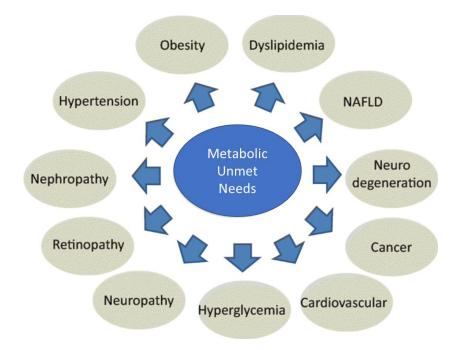
\wedge

Our Mission

"Discovering and developing drugs against novel targets to address the unmet medical needs in Metabolism, Fibroticrelated disease, Cardiovascular, and Cancer."


Our Goals

- Investigating novel biomarkers for unmet medical needs
- First-in-class drug development
- Bring more pipelines to clinical phase


Our Accomplishments

- · Medicinal chemistry services to partners
- Knowhow and experience for novel drug development
- Stable sales revenue
- Phase I Clinical Trials with lead asset

JD BIOSCIENCE | Targets and Technology of JD Bioscience

Metabolic diseases have high unmet medical needs

Jacob Bar-Tana Rev Endocr Metab Disord, 2020 (Modified)

New medications are needed

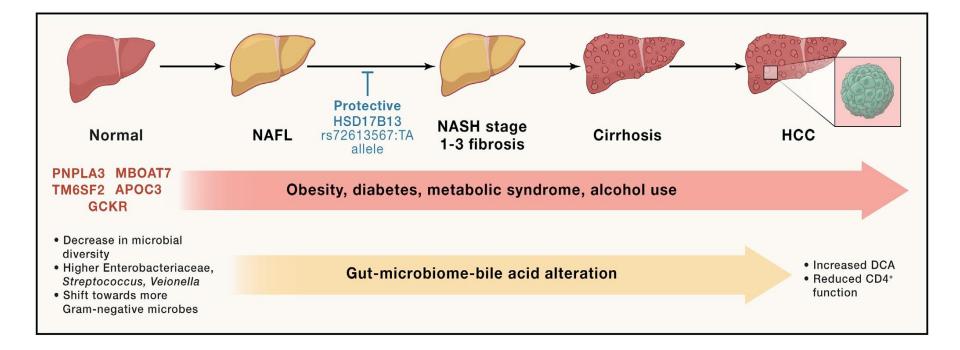
Drug Pipelines

- 1 Lead Pipelines
- 2 NASH
- 3 IBD
- 4 Discovery Stage

JD BIOSCIENCE | Lead Candidate Pipelines

Pipeline	Code	Indication	Target	Discovery	Pre-clinic	Phase 1	Phase 2	Plans for BD
1	GM60106	NASH	HTR					L/O for USA or other territories at Phase I
	GM60***	NASH	HTR					Backup of GM60106
2	GM10395	Inflammation Heart disease Cancer	PDK					L/O for USA or other territories at preclinical stage
L	GM-X2	Pancreatitis/ Heart disease	PDK					
3	-	Sepsis Septic shock	confidential					Commercialize in Korea market
4	-	NASH	confidential					Commercialize in Korea market
5	-	Cancer	confidential					ADC Partners
6	-	Undruggable Targets	confidential					PROTAC Partners

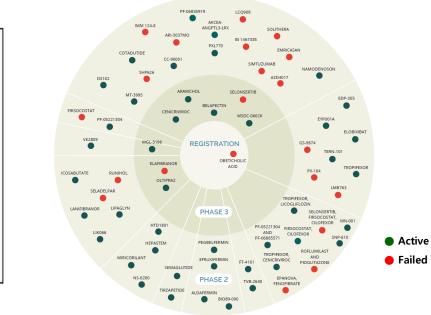
HTR-5HT(Serotonin) Receptor PDK-Pyruvate Dehydrogenase Kinase ADC-Antibody Drug Conjugate PROTAC-Proteolysis Targeting Chimera


Non-Alcoholic Steatohepatitis

Risk factors and progression of NASH

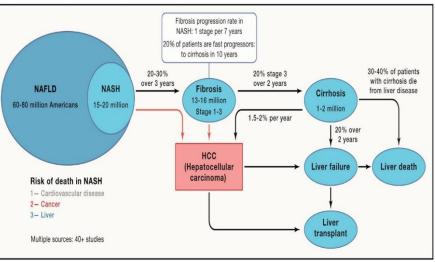
- NASH, an advanced form of non-alcoholic fatty liver disease (NAFLD), can progress to liver fibrosis, cirrhosis, and hepatocellular carcinoma
- Genetic factors, environmental factors, and microbiome alterations are mainly involved in disease progression

Loomba and Shulman, 2021


NASH population

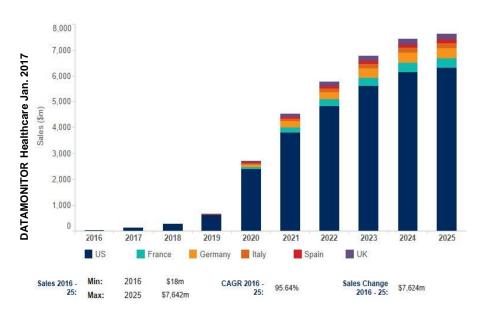
- Experts estimated that 24% of U.S. adults have NAFLD
- 6.5% of NAFLD have NASH
- 20~ 30% of patients with NASH progress to liver fibrosis in 7 years
- 20% of them progress to cirrhosis within two years

Unmet Need


More than 100 drug candidates are currently in clinical trials

NO drugs for NASH are commercially available

Back Bay Life Science Advisors, 2020

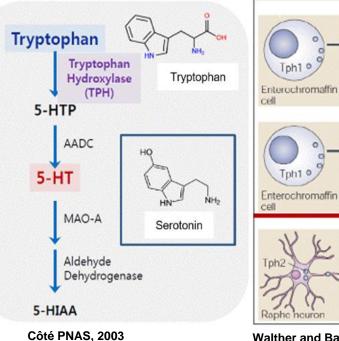

NIH report, 2021

JD BIOSCIENCE | NASH Market Overview

NASH market overview

- Current market size of NASH treatment <\$1 billion due to a lack of drug options
- The sale volume of NASH drugs is expected to grow rapidly

NASH drug sales (2016 to 2025)


Licensing Deals

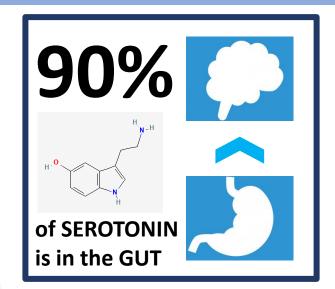
- NASH assets (> \$100 million)
- · Majority of these assets are small molecules.

Year	Licensor	Licensee	Active ingredient	Stage	Licensing fees
2014. 12.	Phenex	Gilead	FXR agonist	P2	\$470M
2015. 05.	Pharmaxis	В.І.	SSAO/VAP-1	P1	\$600M (upfront: \$31M)
2016. 09.	Akarna Therapeutics	Allergan	FXR agonist	P.C.	Unknown (upfront: \$50M)
2016. 09.	Tobira Therapeutics	Allergan	CCR2/5 antagonist	P2	\$1.7B
2019. 01.	Yuhan Corp.	Gilead	Small molecules (undisclosed)	P.C.	\$785M (upfront: \$15M)
2019. 07.	Yuhan Corp.	B.I.	GLP-1/FGF21 dual agonist	P.C.	\$870M (upfront: \$40M
2019.12.	Pliant Therapeutics	Novartis	αVβ1 integrin agonist	P.C.	Undisclosed (upfront: \$80M)
2020. 08.	Thera Biosciences	LG Chem	VAP-1 antagonist	P.C.	\$350M
2020. 08.	Hanmi Pharma	Merck & Co.	GLP-1/GCG dual agonist	P2	\$870M (upfront: \$10M)
2020. 11.	Enleofen	B.I.	IL-11 AB	P.C.	\$1B
2020. 12.	Aligos Therapeutcis	Merck & Co.	Oligo nucleotide	P1	\$458M

Licensing deals (2014 to 2020)

Serotonin plays an important role in our gut

Tph2 Raphe heuron


Peripheral tissue

TPH1

5-H1

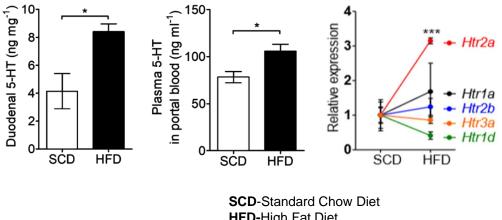
Crypt cell

Walther and Bader Biochem Pharmacol, 2003

Berger M Annu Rev Med, 2009

Blood

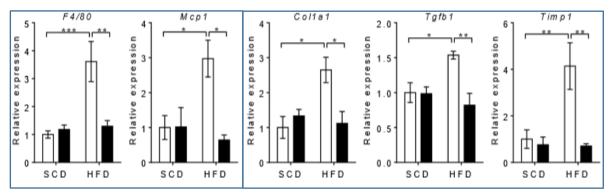
Gut


Involved in storage of lipid in White adipose tissue

Neurotransmitter

5HT-Serotonin **TPH-**Tryptophan Hydroxylase

Highlights


- In a mouse model, a high-fat diet (HFD) increases both serotonin (5-hydroxytryptophan, 5-HT) levels in the plasma levels (portal blood) and serotonin receptor (5-HT receptor 2a, HTR2a) expressions in the liver.
- Activation of the serotonin receptor induces lipogenic gene expression, which in turn enhances lipid storage in hepatocytes
- GM-60106 can effectively reduce lipogenesis, inflammation, and fibrosis in the liver and doesn't induce any BBB-mediated side effects.

Expression of serotonin and its receptors in peripheral tissues

Kim Nat Comm, 2018

HFD-High Fat Diet Htr-5HT (serotonin) receptor Reduction in inflammation and fibrosis-related gene expression in the liver transcriptome WT Htr2a LKO

These results clearly indicates that HTR2a is important for hepatic steatosis

Inflammation marker genes

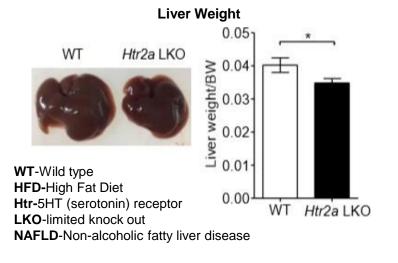
F4/80-Macrophage marker MCP1-Monocyte chemoattractant protein1

Fibrosis marker genes

200

150

100-


50

0

Hepatic TG (mg/g protein)

Col1-Collagen 1 Tgfb1-Tranforming growth factor beta 1 Timp1-tissue inhibitor of matrix metalloproteinase 1

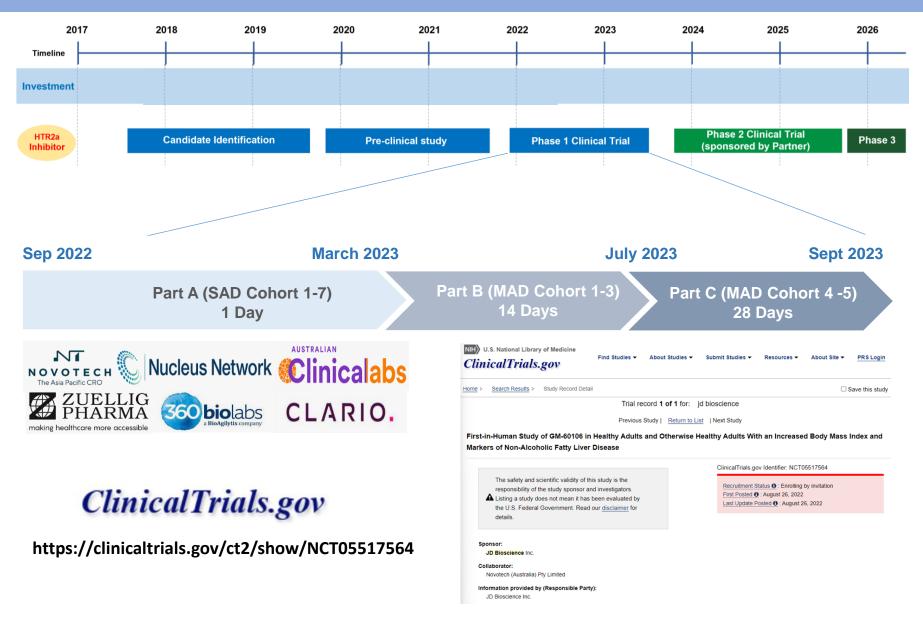
Reduction in hepatic steatosis and the NAFLD activity score

Hepatic Triglycerides

WT - HFD

WT - HFD Htr2a LKO - HFD Htr2a LKO - HFD 8 6. SAN 4-2-WT - HFD Htr2a LKO - HFD Htr2a LKO - HFD SCD SCD + HFD : WT(n=3), Htr2a LKO(n=7)

SCD + HFD : WT(n=3), Htr2a LKO(n=7)


WT - HFD

SCD

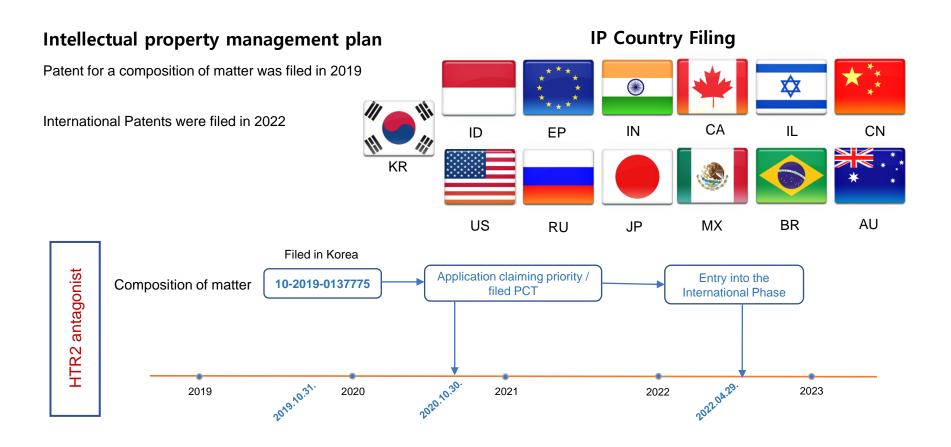
NAFLD activity score

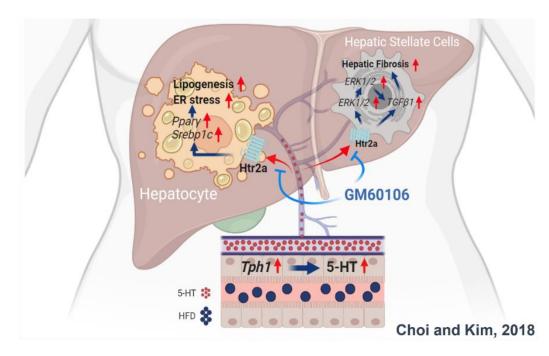
Code	<i>In vitro</i> (cellular assay)	Solubility/PPB/ CLogP	Chemical stability	Hepatocyte stability (3 hrs)	Plasma stability
GM60106	14 nM	1.3 mg/mL pH = 6.8/ 97.5 % (m) 96.7 % (r) 97.1 % (h) /3.16	99.8 % (25 °C, 3 weeks) 99.6 % (60 °C, 3 weeks) No form change	94 % (human) 88.5 % (dog) 84.6 % (monkey) 68.9 % (rat) 75.0 % (mouse)	>99.9 % (m) >99.9 %(r) >98.6 ± 11.7 %(h) (% remaining after 4 hrs)
Cytotoxicity (IC ₅₀)			CYP inhibition (at 10 μM)	<i>In vivo</i> PK (rat)	In vivo PK (dog)
VERO > 100 μM HFL-1 > 100 μM L929 > 100 μM NIH3T3 > 100 μM CHO-K1 > 100μM	Negative	LD ₅₀ > 1000 mpk	1A2: < 1 % 2C9: 3.17 % 2C19: 6.83 % 2D6: 26.3 % 3A4: 17.6 %	IV (5mpk) Oral (10mpk) T1/2: 4.14 h AUC: 2.88 ug.h/ml CL: 2.82 L/h/kg V: 8.86 L/kg BA 61 %	IV (5mpk) Oral (5mpk) T1/2: 8.6h AUC: 19.11 ug.h/ml CL: 0.42 L/h/kg V: 4.36 L/kg BA 73 %
<i>In vivo</i> efficacy in normal with high fat	in normal with efficacy		STAM mice	Dog telemetry	BBB permeability
Body weight gain reduction, Reduced fat accumulation 5, 10 mpk	reduction, Reduced fat accumulation in liver		Reduced inflammation and fibrosis in liver 5, 10 mpk	Cardiovascular Radiotelemetry Assessment in Conscious Dogs 50,100, 200 mpk (No change)	BQL (below lower limit) in Brain based on tissue distribution of [14C]-GM-60106

() JD BIOSCIENCE | **NASH Clinical Phase I Trial**

Since NASH is a multifaceted disease caused by various cellular and signaling events, combination therapies that can target multiple cellular signaling pathways might be crucial for developing effective drugs for NASH.
Hence, diverse combination studies are at the clinical stage.

We are seeking opportunities to develop additional combination therapies.


"We expect that treatment response can be enhanced by strategically combining multiple agents targeting distinct metabolic pathways to not only achieve resolution of NASH and improvement in fibrosis but also a reduction in cardiovascular disease risk and future risk of cancer."


Loomba and Shulman Cell, 2021

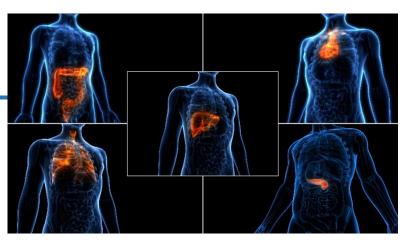
1. Cenicriviroc (CCR2/5 receptor inhibitor, Allergan) +Tropifexor (FXR agonist, Novartis)

- 2. Semaglutide (GLP-1 agonist, Novo Nordisk) + Cilofexor (FXR agonist, Gilead)
- + Firsocostat (ACC inhibitor, Gilead)
- 3. Firsocostat (ACC inhibitor, Gilead) + Fenofibrate (PPAR-α, Abbvie)
- 4. Cilofexor (FXR agonist, Gilead) + Firsocostat (ACC inhibitor, Gilead)
- + Selonsertib (ASK1 inhibitor, Gliead)
- 5. Licogliflozin (SGLT1/2 inhibitor, Novartis) +Tropifexor (FXR agonist, Novartis)
- 6. PF-05221304 (ACC1/2 inhibitor, Pfizer) + PF-06865571 (DGAT2 inhibitor, Pfizer)

CCR-Chemokine Receptor FXR-Farnesoid X Receptor GLP-glucagon-like peptide ACC-Acetyl-CoA Carboxylase **PPAR-**Peroxisome Proliferator-Activated Receptor **ASK1-**Apoptosis Signal-regulating Kinase **SGLT-**Sodium-glucose Cotransporter **DGAT-** Diglyceride acyltransferase JD BIOSCIENCE | Patents

Summary

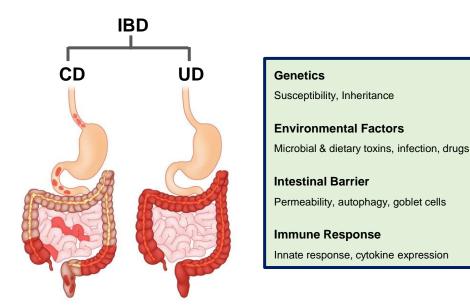
•


•

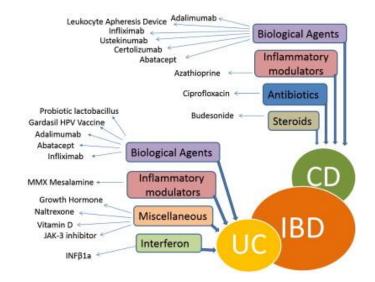
- Discovered unknown roles for HTR receptormediated serotonin signaling in liver, which is related to the progression of NASH and liver fibrosis.
- GM-60106 compound was synthesized a chemical compound that directly inhibits HTR2a receptors on liver cells.
- GM-60106 preclinical studies were completed showing reduction in lipid accumulation in the liver, fibrosis, and steatosis.
 - Proprietary compounds are IP protected

Inflammation

Inflammatory Bowel Disease



Inflammatory Bowel Disease (IBD)


- Caused by Genetics and Environmental Factors
- Experts estimated that 1.2% of U.S. adults have IBD and the incidence rate of this population is rapidly rising.
- Pro-inflammatory cytokines, such as TNF, IL-6, produced by the activated immune cells are suggested to drive the perpetuation of inflammation and tissue damage.

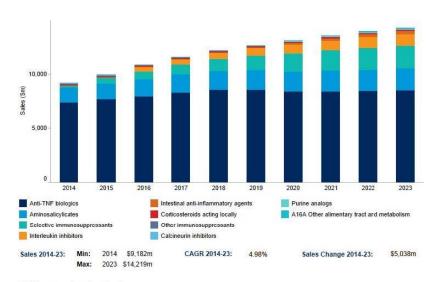
Unmet Need

- Unresponsive to biologics (anti-TNFα, anti-integrin, IL12/IL23): approximately 30% of patients
- Losing response among previous responders: up to 10%/year
- Significant infectious and neoplastic side effects with current IBD medications

Neurath 2019, Nat. Immunol.

Chandel 2015, Pharm. Rep.

JD BIOSCIENCE | IBD Market Overview

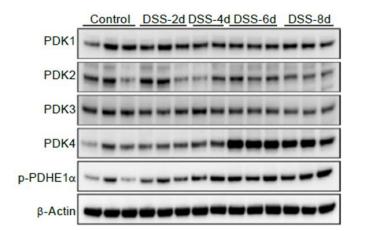

IBD market overview

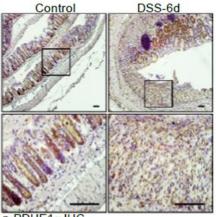
- Current market size of IBD treatment >10 BIL USD
- The sale volume of IBD drugs is expected to grow rapidly

Licensing Deals

- Anti-TNF antibodies hold the largest market share in the IBD therapeutics market.
- While the market share of interleukin inhibitors and chemical antagonists are **increasing**.

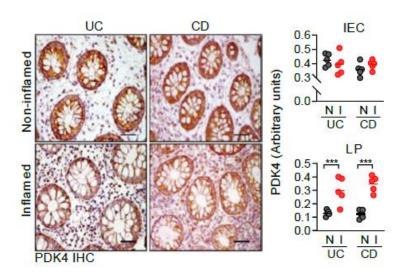
Year	Licensor	Licensee	Active ingredient	Stage	Licensing fees
2016 10.	AstraZeneca	Allergan	IL-23 AB	P2	\$1.27B (upfront: \$250M)
2017. 04.	Finch Therapeutics	Takeda	FIN-524 microbiomes	P.C.	Undisclosed (upfront: \$10M)
2017. 05.	Protagonist	J&J	IL-23 inhibitor (oral peptide)	P.C.	\$0.99B (upfront: \$50M)
2017. 09.	Janssen	Provention Bio	CSF-1R antagonist, TLR3 AB	P1/P.C.	Undisclosed
2018. 12.	Bridge Bio	Daewoong Pharma	Pelliono-1 Antagonist	P1	\$40M
2019. 04.	IFM therapeutics	Novartis	NLRP3 Antagonist portfolio	P.C.~P1	\$310M ~ \$16B
2019. 07.	Alfasigma	Innovation Pharma	Brilacidin (non-corticosteroid)	P2	\$24M + upfront
2019. 09.	Prometheus Biosciences	Takeda	(>200,000) Patient samples	Discovery	\$420
2020. 05.	Gossamer Bio	Aerpio Pharma	HIF-1a stabilizer	P.C.	\$90M (upfront: \$15M)




CAGR = compound annual growth rate

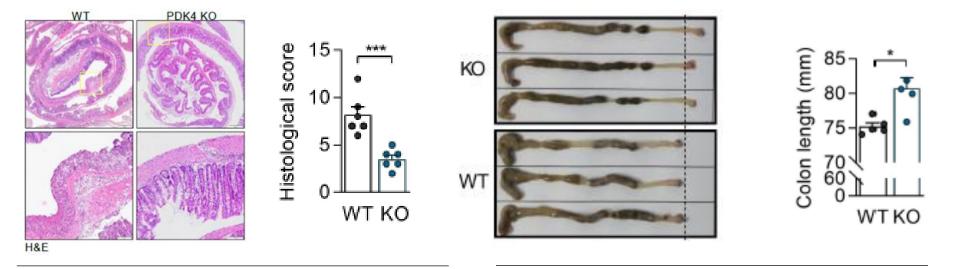
2014 to 2023 IBD drug sales in the seven countries

Licensing deals of IBD assets from 2016 to 2020


JD BIOSCIENCE Activated Helper T Cells Express PDK

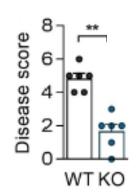
p-PDHE1a IHC

In vivo colitis mouse model

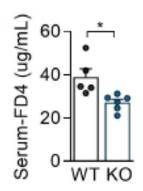


PDK is over expressed in inflammatory bowel Disease

PDK-Pyruvate Dehydrogenase Kinase PDHE1-Pyruvate dehydrogenase E1 DSS-Dextran sulfate sodium CD-Crohn's Disease UC-Ulcerative colitis

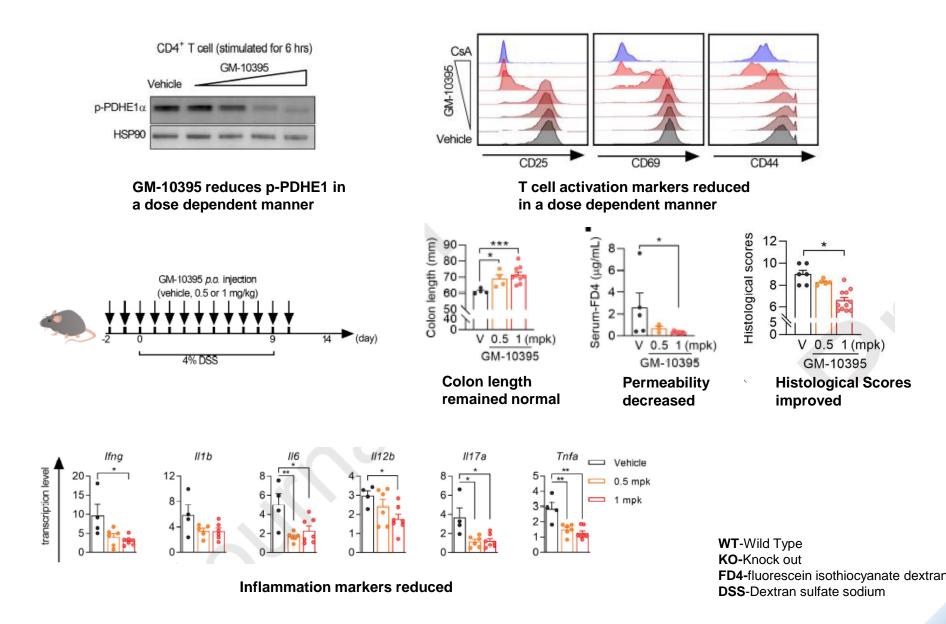

Human patients

JD BIOSCIENCE | PDK4 Deficiency Prevents Inflammatory Bowel Disease

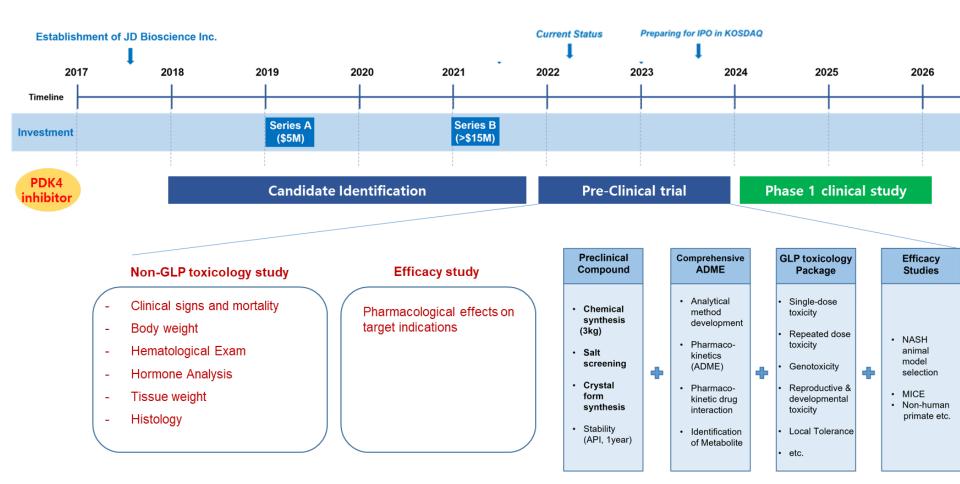


Protection of epithelial lining and reduced inflammation

Colon length was not shortened

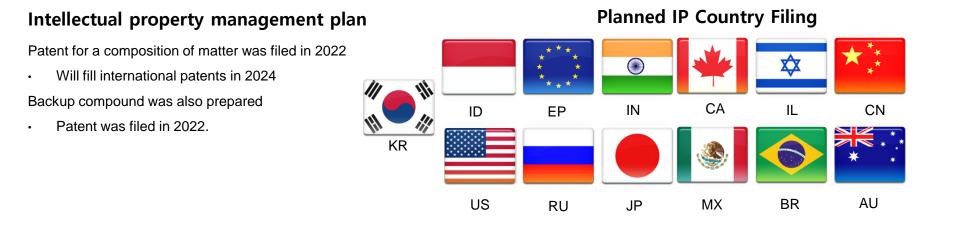

Disease scores decreased

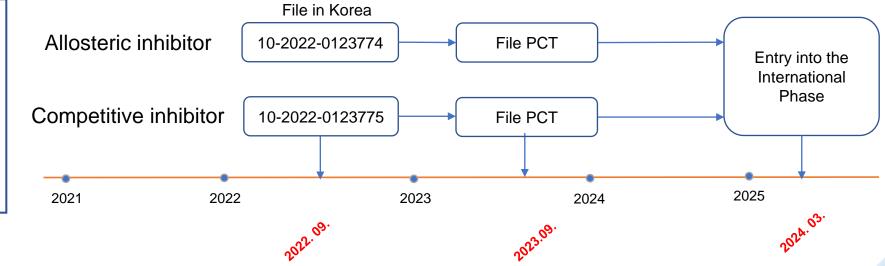
Deletion of PDK4 from CD4+ T cells protects against DSS-induced colitis


Permeability decreased

WT-Wild Type KO-Knock out FD4-fluorescein isothiocyanate dextran DSS-Dextran sulfate sodium

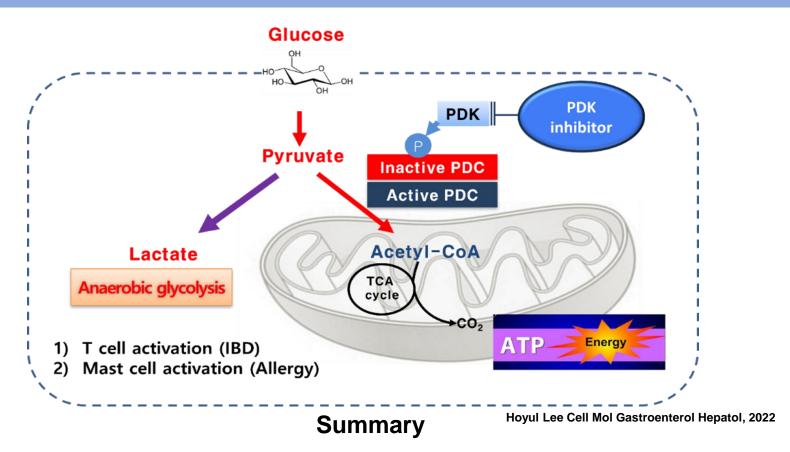
Plan for pre-clinical and clinical study


- Non-GLP toxicology study in progress
- Will start GLP in Q1 of 2023



() JD BIOSCIENCE | **GM-10395 Chemical Profile**

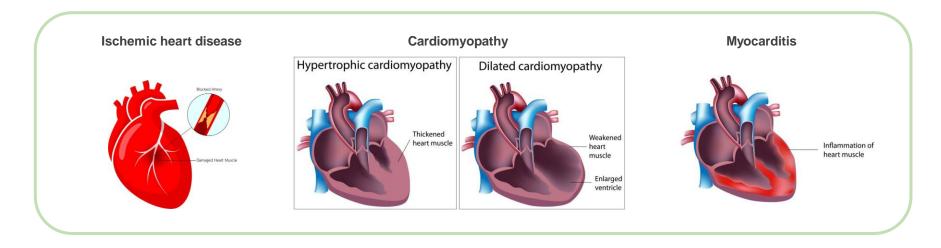
Code	Code Inhibitor Class		Recovery of mitochondria function			
GM-1039506	Allosteric inhibitor	Inhibition of PDHE1α Phosphorylation 159nM(IC ₅₀)	GM10395 recovered Mitochondria function with Dose dependent manner			
CYP inhibition (IC _{50 µ} M)	HERG inhibition	PPB	Plasma stability (4hr incubation)	AMES test	Acute toxicity	
IA2: 33.69 2C9: 12.64 2C19: 12.18 2D6: 7.94 3A4: 7.72	32.8% at 10 _µ M	99.3%(m) 99.5%(m)	Human 89%	Negative	LD50> 1000mpk	
In vivo PK	In vivo IBD study	In vivo Anti-cancer efficacy	In vivo efficacy (anti-diabetes)	Structure		
IV(5mpk) Ora (10mpk) T1/2: 5.15h AUC:1.76 µg/ml(IV) BA: 48%	Improved histological Score colon length In vivo at 1mpk	Reduced tumor Volume In xenograft mice At 10mpk dose	Glucose AUC reduction (OGTT) Oral administration	Active site Active site Active site Active site Active site		


PDK antagonists

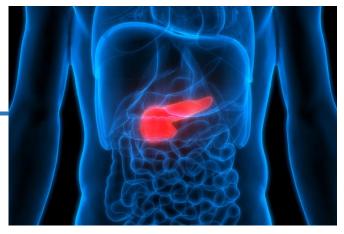
34

JD BIOSCIENCE | IBD Summary

- Discovered unknown roles for PDK in CD4+ T cells , which is related to the progression of IBD.
- GM-10395 compound directly inhibits PDK signaling in CD4+ T cells.
- GM-10395 preclinical studies show a reduction in colitis.
- Proprietary compounds are IP protected.

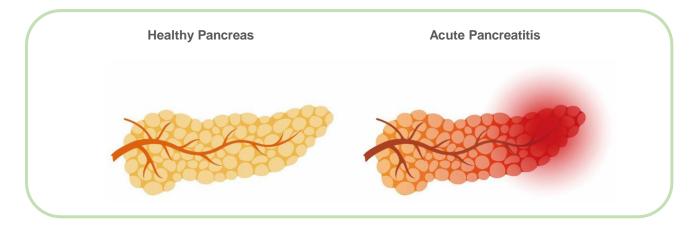

Heart

• Heart disease, a leading cause of death globally, can be categorized into ischemic heart disease, cardiomyopathy, and myocarditis.


• Ischemic heart disease is involved in the reduction of blood flow due to the accumulation of fatty deposits in the coronary arteries. Cardiomyopathy, including hypertrophic or dilated cardiomyopathy, is a disease of the heart muscle that can occur due to various risk factors. Finally, myocarditis is characterized by the inflammation of the heart muscle, which often occurs due to a viral infection. All of these can ultimately lead to fatal heart failure.

• Different types of medication are available to treat heart disease, for example, cholesterol-lowering medications, beta-blockers, nitroglycerin, and calcium channel blockers. However, none of these can rescue the function of cardiomyocytes once heart failure is in progression.

JDB is developing a novel drug candidate for heart disease that can rescue heart function at a cellular level, and can eventually help improving heart function

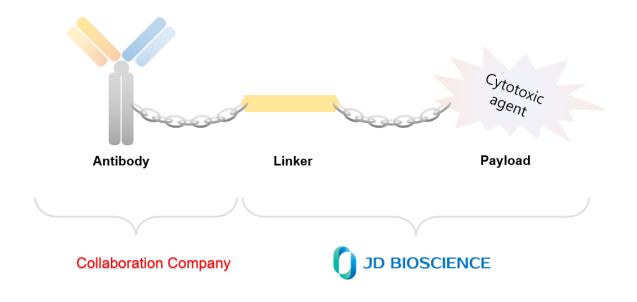

Pancreas

Risk factor and causes of Pancreatitis

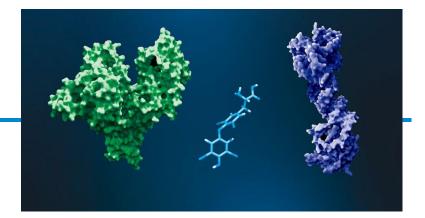
- Acute pancreatitis (AP) is characterized by the sudden inflammation of the pancreas and occurs when digestive enzymes within the pancreas are abnormally activated. The main risk factors of AP are gallstones, which make up 40% of cases, and alcohol misuse, which makes up 30% of cases.
 Recent findings also indicate that type 2 diabetes or smoking can increase the risk of non-gallstone-related AP.
- AP was the second-highest cause of total hospital stay and the fifth leading cause of in-hospital death in the USA in 2015. However, to date, no specific causal treatment for AP is available. Instead, supportive care, such as pain control, is the only available treatment.

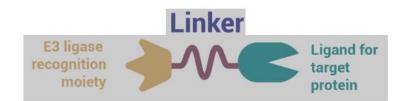
JDB is developing a novel drug candidate for acute pancreatitis that can effectively reduce inflammation of the pancreas by modulating mitochondrial functions in pancreatic cells.

Cancer

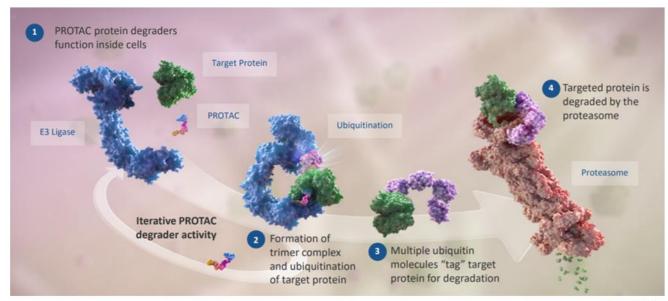

- 1 ADC
- 2 PROTAC

ADC





Antibody-Drug Conjugates (ADCs)



PROTAC

JD BIOSCIENCE

Source: Avinas

JD BIOSCIENCE | Strategic Alignment

JD Bioscience's Strategic Alignment

Licensing out GM60106, GM-10395

• Exclusive and/or Territorial rights

Partnership to lead metabolic disease & inflammatory disease market

GM-60106

- ✓ Innovative First-in-Class Technology: HRT2a
- ✓ Mechanism for NASH-related fibrosis
- ✓ Safe, NO CNS-mediated safety issues

GM-10395

- ✓ Innovative First-in-Class Technology: PDK
- ✓ Mechanism for IBD inflammation
- ✓ NO adverse side effects in animal model

THANK YOU

For more information, please contact:

Sungmin Song, Ph.D Phone:+82-62-974-9380 Email: seaflow@jdbiosci.com

Peter Goughnour, Ph.D Phone:+82-2-406-9380 Email: petergoughnour@jdbiosci.com

801ho, TJS knowledge industrial center 17-23, Cheomdangwagi-ro, 208 beon-gil, Buk-gu, Gwangju, South Korea

www.JDBIOSCI.COM | +82-62-974-9380